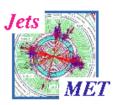
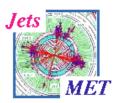
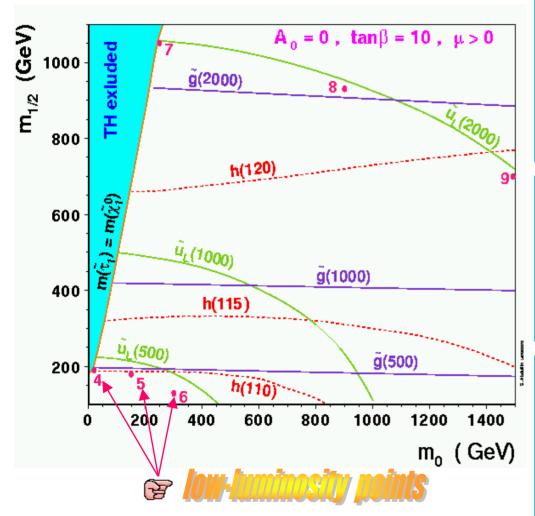


HIGH-LUMI SUSY TRIGGER




Preamble



- Low luminosity study: CMS IN-2002/036
 - http://cmsdoc.cern.ch/~abdullin/events/talks/acat2002.pdf
 - Probing points studied at the Tevatron II reach limit (along squark isomass curve of ≈ 400 GeV)
 - Given 2 kHz @ L1 and 3Hz @ L2
 - Hybrid genetic algorithm written for cuts optimization
 - 6 essential combinations of L1 and L2 channels (out of 18)
 - R-parity violation scenario yields marginal efficiency @ L2
- Now next step high luminosity
 - Probing points chosen at mass scale of ≈ 2 TeV

Probing Points

$$m(\widetilde{\chi}_1^0) = 445 \text{ GeV} \qquad m(h) = 122 \text{ GeV}$$

$$m(\widetilde{g}) = 2235 \text{ GeV} \qquad m(\widetilde{u}_L) = 1986 \text{ GeV}$$

$$\sigma \sim 17 \text{ fb} \qquad \text{tau and sneutrino-enriched}$$

$$7 \quad 250,1050$$

```
m(\widetilde{\chi}_1^0) = 391 GeV m(h) = 121 GeV m(\widetilde{g}) = 2032 GeV m(\widetilde{u}_L) = 1962 GeV \sigma ~ 22 fb "spoiling" decays of chargino-neutralino 8 900,930
```

```
m(\widetilde{\chi}_{1}^{0}) = 293 \text{ GeV} \quad m(h) = 120 \text{ GeV}
m(\widetilde{g}) = 1625 \text{ GeV} \quad m(\widetilde{u}_{L}) = 1975 \text{ GeV}
\sigma \sim 59 \text{ fb} \quad \text{more jets, less MET}
9 1500,700
```


R-Parity Violation

Most challenging scenario (?)

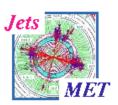
- \rightarrow $\widetilde{\chi}_1^0$ \rightarrow 3 quarks
- ➤ 6 additional jets, not necessarily soft :

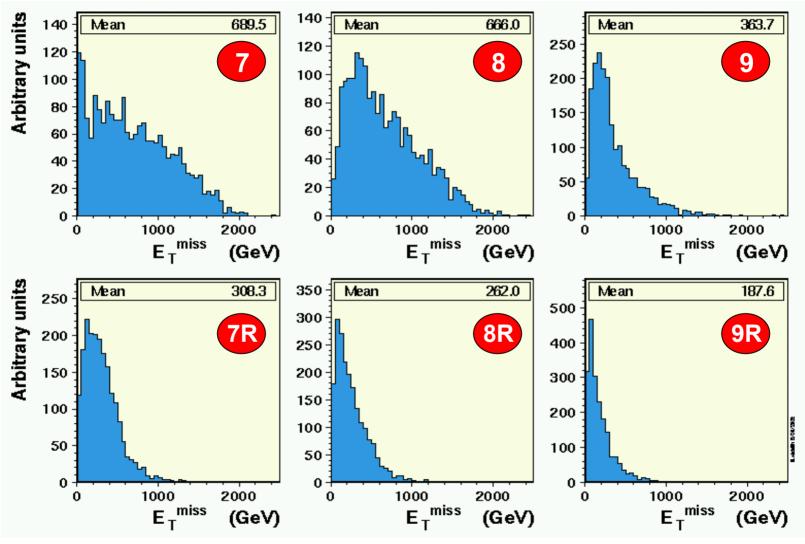
$$\chi_1^0$$
 mass \approx 300-450 GeV

- Missing ET shrinks, still some amount remains
 - copious b-jets, W/Z, taus and neutralinos

ISAJET 7.58 – ISAWIG 1.104 – HERWIG 6.301

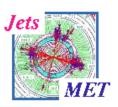
Points

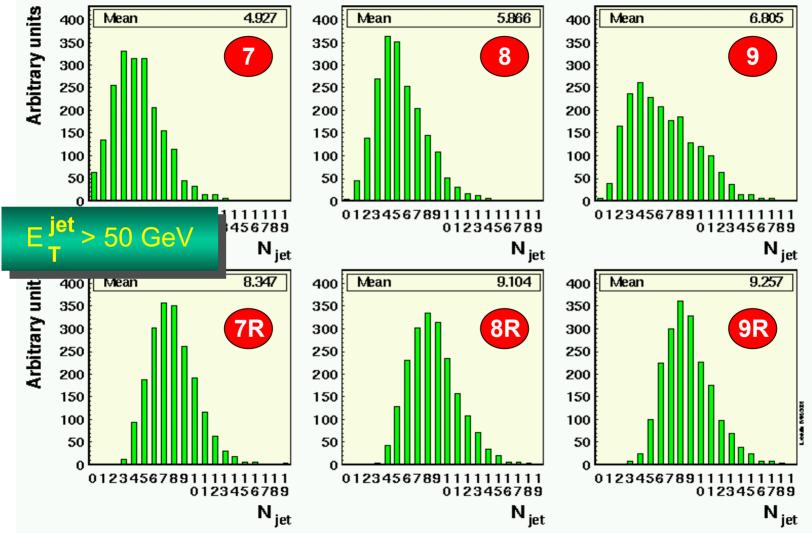

8R



June 11, 2002

Missing ET @ L2

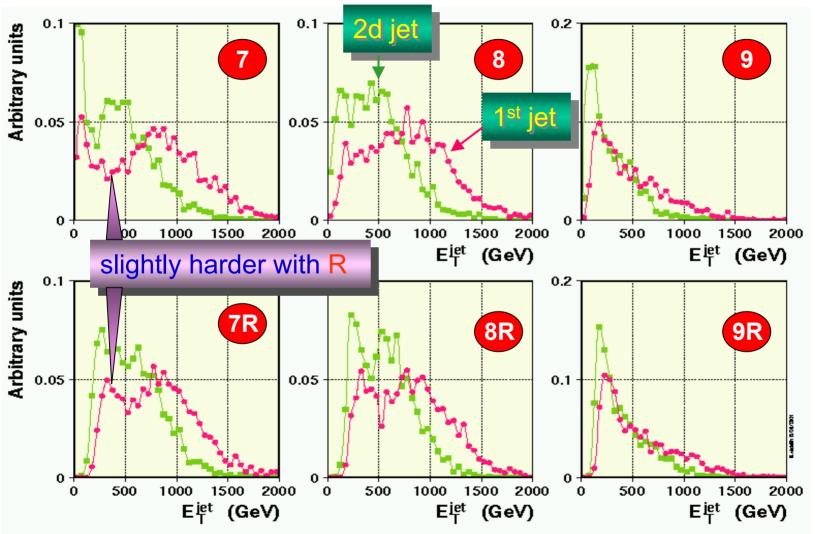




S.Abdullin (UMD) High-Luminosity SUSY Trigger

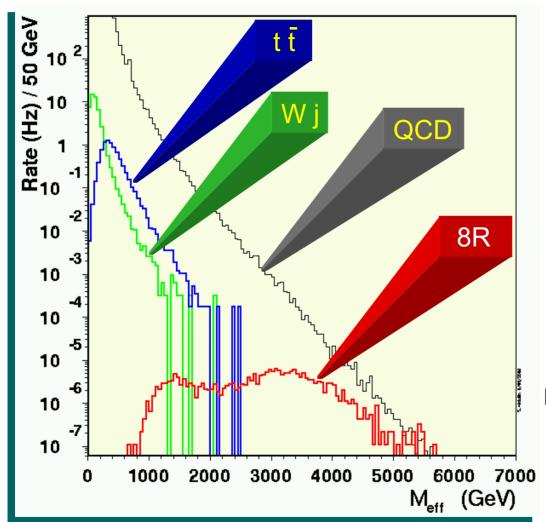
Number of Jets @ L2





June 11, 2002 S.Abdullin (UMD) High-Luminosity SUSY Trigger

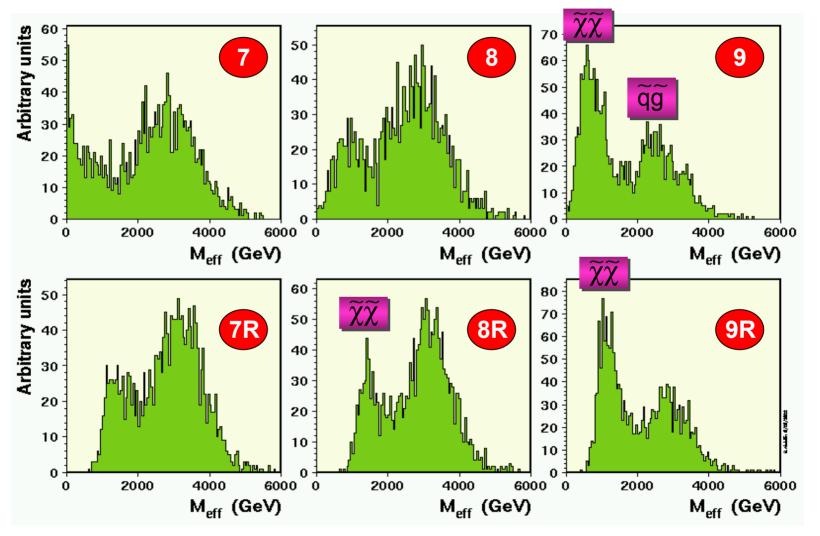
Leading Jets @ L2


June 11, 2002

S.Abdullin (UMD) High-Luminosity SUSY Trigger

Transverse Mass @ L2

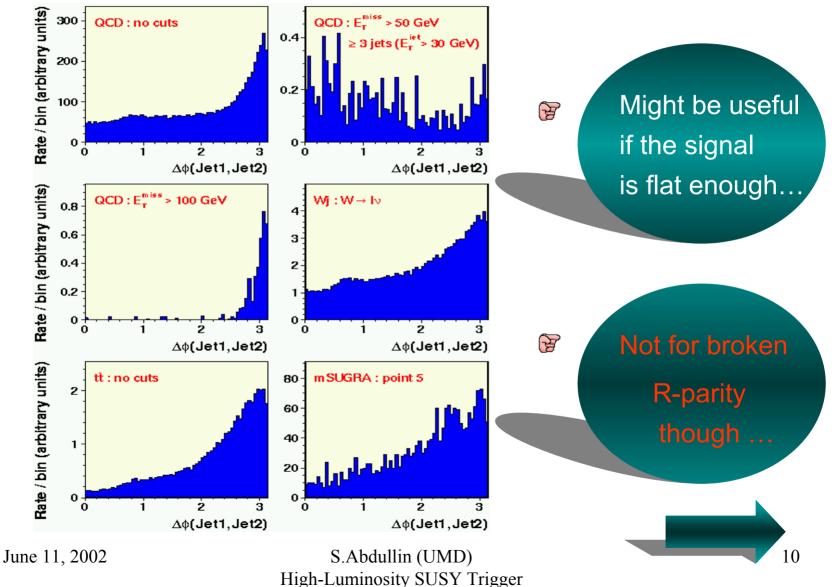
$$M = \sum E_T^{jet} + E_T^{miss}$$


Might be useful @ L2

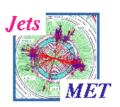
S.Abdullin (UMD) High-Luminosity SUSY Trigger

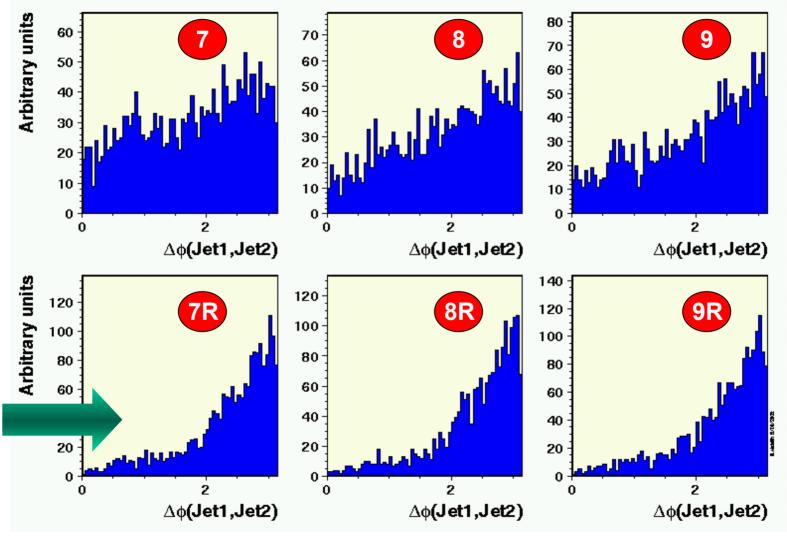
SUSY Transverse Mass @ L2



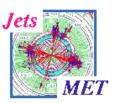

June 11, 2002

S.Abdullin (UMD) High-Luminosity SUSY Trigger


Azimuthal Angle between Leading Jets



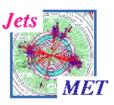
$\Delta \phi$ (J1,J2)



June 11, 2002 S.Abdullin (UMD) High-Luminosity SUSY Trigger

Data Samples

6 mSUGRA samples

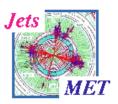

- Spring 2002 production
- 2000 events each
- high-lumi provisional energy corrections from Andrei Krokhotine

3 SM backgrounds

- Autumn 2001 production (low lumi!)
- ➤ QCD (Pal's filter applied) ≈ 1 mln. events
- > Wj (W → l v) \approx 150,000 ev.
- \rightarrow t \bar{t} \approx 46,000 ev.
- Low-lumi jet energy corrections

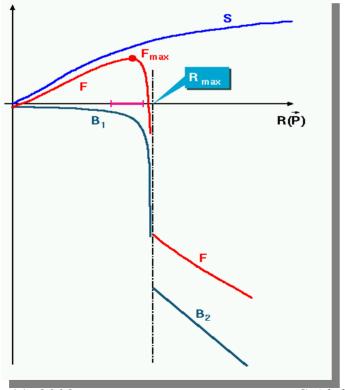
L1 and L2 cuts

L1 cuts :


MET || J1 || J2 || J3 || J4 || (J1 && MET)

L2 cuts :

```
  \[
  \{
  \left(J1 && MET) || (J2 && MET) || (J3 && MET) || (J4 && MET) ||
  \left(| MET \right) ||
  \{
  \{
  \left(J1 && MET) || (J2 && MET) || (J3 && MET) || (J4 && MET) ||
  \left(| MET \right) && Δφ(J1,J2) |
  \}
  \]
```



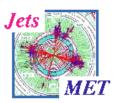
Hybrid Genetic Algorithm (I)

"Society of individuals


- Fixed-size population (100-1000 individuals)
- ➤ Each individual has a unique combination of genes (cuts) P→
- Hierarchy is established according to evaluation function F(P)

- Maximal signal efficiency S(P)
- Rate R(P) is close to R_{max}

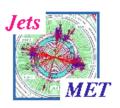
Hybrid Genetic Algorithm (II)



- **Act of Creation (random)**
 - **Breeding** random ("uniform") crossover of genes between parents, offspring is added, parents retained;
 - probability to participate ~ place in the hierarchy.
 - **Mutation** random change by one bit (up/down) of a random gene; mutation probability is significant (10-100 %) and independent from hierarchy;
 - Initial individual retained, the result of mutation added.
 - removal of clones (repl. with newly created individ.);
 - descending ordering according to the evaluation func.;
 - removal of redundant individuals;
 - separate "Top 10" list update (if any);
 - complete random renewal of the population, except Cataclysmic > the best individual; "Top 10" is not affected also.
 - applied in case of stagnation (50-100 generations) a few times.

Selection

L1 Preliminary Results



Jets and missing E _cuts (GeV) for optimal signal effficiency @ L1

L2 Preliminary Results

		J1&&MET	J3&&MET	J4&&MET 50 120	CII	J1&&MET&&∆φ 90 160 160 deg.
Signal efficiency w.r.t L1 (%)	7	73 (73)	78 (42)	86 (64)	89 (83)	95 (81)
	8	67 (67)	75 (49)	89 (75)	91 (83)	96 (78)
	9	35 (35)	45 (34)	74 (73)	79 (61)	89 (67)
	7R	27 (27)	53 (51)	81 (80)	97 (92)	97 (53)
	8R	21 (21)	42 (42)	71 (71)	96 (84)	96 (44)
	9R	11 (11)	25 (24)	55 (55)	81 (74)	81 (31)
Rate (Hz)	QCD	0.01	0.04(0.03)	1.17(1.15)	2.42(1.45)	2.50(0.22)
	W j -					0.18 2.9
<u> </u>	t t̄					0.22

SUMMARY

- High-mass SUSY points considered
 - Both with/without R-parity violation
 - High luminosity required ...
- Cuts are optimized with genetic algorithm
- @L1 a few simple cuts do the job
- @L2 signal efficiency is (sufficiently) high ...
 - Single jets cuts and MET are less effective than jet&&MET and effective transv.mass M eff
- Partial L1+L2 channel-by-channel analysis to follow...